Monday, August 21, 2017

දෛශික (vectors) - 11

පරිමා අනුකලනය

රේඛා අනුකලනය, පෘෂ්ට අනුකලනය හරිහැටි අවබෝධ කරගෙන ඇත්නම්, පරිමා අනුකලයෙන් (volume integral) කියවෙන්නේ කුමක්දැයි පහසුවෙන්ම අවබෝධ කර ගත හැකිය. යම් (ත්‍රිමාන) අවකාශයක ඇති පරිමාවක් සහිත වස්තුවක්/කලාපයක් (region) ගැන සිතන්න. මෙම වස්තුව වටේම S පෘෂ්ටයක්ද, එම පෘෂ්ටය තුල V පරිමාවක්ද පවතී. දැන් මෙම පරිමාව කුඩා පරිමා කොටස් ගණනාවකට බෙදන්න. ඉන් එක් කුඩා පරිමා කොටසක් δV වලින් සංඛේතවත් කරමු. මෙය පරිමාවක් වන නිසා දෛශික අගයක් නොවේ (එනම්, δV යනු අදිශයකි). මෙම කලාපය හරහා F(R) නම් දෛශික ක්ෂේත්‍රයක් පවතී යැයිද සිතමු. එවිට, එක් δVi කොටසක පිහිටුම් දෛශිකය Ri නම්, එම ස්ථානයට අදාල දෛශික ශ්‍රිත අගය F(Ri) වන අතර, එම දෙකෙහි ගුණ කිරීම (දෛශිකයක් හා අදිශයක් බැවින් මෙතැන පවතින්නේ දෛශික ගුනාකාරය බව පැහැදිලියිනෙ) F(Ri) δVi වේ.

මෙලෙස කුඩා පරිමා කොටස් සියල්ලගේම ගුණිතයන් එකතු කර, එම කොටස් ගණන අනන්තයක් දක්වා වැඩි කළ විට (හෙවත් පරිමාව ශූන්‍ය කරා ගෙන යන විට), අපට ලැබෙන්නේ පරිමා අනුකලයයි.

අනුකල සලකුනට යටින් ඇති E අකුරින් සංඛේතවත් කරන්නේ මෙය පරිමා අනුකලයක් බවයි. පරිමා අනුකලය සංඛේතවත් කරන ආකාර කිහිපයක්ම තිබේ. එම E වෙනුවට V, D, R යන අක්ෂරවලින් එකක් වුවද තිබිය හැකිය. තවද, අනුකල ලකුණු 3ක් යොදා ගෙනත් පරිමා අනුකලය සංඛේතවත් කරනවා. පහත දැක්වෙන එම සංඛේතවලටත් හුරු වන්න.

මීටත් අමතරව, විෂය පදය dV වෙනුවට dτ (τ යනු ග්‍රීක අකුරක් වන "ටෞ" වේ) ලෙස දැක්විය හැකියි. එයම d3r ලෙසද දැක්විය හැකිය (මින් හඟවන්නේ කුඩා දුරවල් 3ක් දිගxපලලxඋස ලෙස ගෙන ඇති බවයි). තවද, dV = dxdydz ලෙස ගත හැකි අතර (කාටිසියානු පද්ධතියකදී), එනිසා තනි dV වෙනුවට dxdydz ලෙසද ලිවිය හැකිය.

පරිමා අනුකලයද පුනර්කෘත අනුකලනයකින් සුලු කළ යුතුය. මෙවිට විවිධ විෂය පද 3කින් තෙවරක් නිශ්චිත අනුකලනය කළ යුතු වෙනවා. එනම් පරිමා අනුකලය පහත ආකාරයට පුනර්කෘත අනුකලයක් බවට පත් කරගත යුතුය.

විෂය පදය හෙවත් dV යනු අදිශයකි. එනිසා තිත් හෝ කතිර ගුණිතය ඒ සමඟ සිදු කළ නොහැකිය. එබැවින් ශ්‍රිතය එක්කෝ අදිශයක් නැතහොත් දෛශිකයක් විය යුතුය. ශ්‍රිතය අදිශ වුවොත්, මෙම ගණිත කර්මයේ කිසිදු දෛශික රාශියක් නැති නිසා එය දෛශික පාඩමට අදාල නොවේ (එය නිකංම සාමාන්‍ය පුනර්කෘත අනුකලනයකි). එහෙත් ශ්‍රිතය දෛශික වන විට, දෛශික ගුණිතය පවතින බැවින් එය දෛශික පාඩමට අදාල වේ. ඒ අනුව රේඛා හා පෘෂ්ට අනුකලවල මෙන් ආකාර 3ක් අපට ලැබෙන්නේ නැත පරිමා අනුකලයේදී.

පරිමා අනුකලය විද්‍යාවේදී බහුලව භාවිතා වේ. අවකාශයේ (හෝ යම් වස්තුවක හෝ) යම් කුඩා ඒකක පරිමාවක පවතින යම් (දෛශික රාශි) ගුණයන් විද්‍යාවේදී නිතර යොදා ගැනේ. ඒකක පරිමාවක පවතින යම් ගුණයක ප්‍රමාණය "ඝනත්වය" ලෙස හැඳින්වේ (සාමාන්‍යයෙන් ඝනත්වය කියන්නේ ඒකක පරිමාවක ඇති ස්කන්ධයට වුවත්, ස්කන්ධනය නොවන වෙනත් ගතිගුණයක්/රාශියක් ගැන කතා කරන විටත් ඒ නම යොදා ගැනේ). ඒ අනුව, ධාරා ඝනත්වය ආදී ලෙස විවිධ ඝනත්වයන් ගැන කතා වේ. මෙවැනි ඝනත්වයක් දන්නේ නම්, අදාල සමස්ථ වස්තුවේ/අවකාශයේ පවතින එම රාශි අගය පරිමා අනුකලනයෙන් ලැබේ.

ඛණ්ඩාංක පද්ධති

මේ තාක් අප දෛශික ගැන ඉගෙන ගැනීමේදී යොදා ගත්තේ කාටිසියානු ඛණ්ඩාංක පද්ධතිය පමණි. මෙම ඛණ්ඩාංක පද්ධතිය ද්විමාන හා ත්‍රිමාන යන ආකාර දෙකෙන්ම යොදා ගත්තා. කාටිසියානු පද්ධතියේ තිබෙන විශේෂත්වය වන්නේ එය ඉතා සරල වීමයි. ද්විමාන හා ත්‍රිමාන පද්ධති දෙකම ජ්‍යාමිතිකව කොලයක් මත ඇඳ පෙන්වියද හැකියි.

අවශ්‍ය නම්, ත්‍රිමානයට වඩා ඉහල මාන සඳහාද (සූත්‍රවල) එය යොදා ගත හැකි නමුත් කොලයක් මත ඇඳීමට බැරි වෙනවා. එහිදී වැඩි වන මානයකට තවත් එක් ප්‍රලම්භක අක්ෂයක් ලබා දිය යුතු වෙනවා. මාන ගණනට සමාන ඛණ්ඩාංක/අක්ෂ ගණනක් තිබිය යුතු බවද මතක තබා ගන්න.

ඕනෑම ඛණ්ඩාංක පද්ධතියක තිබිය යුතු ලක්ෂණය වන්නේ ප්‍රලම්භකතාව (orthogonality) වේ. එනම්, පද්ධතියේ එක් මානයක් හඟවන අක්ෂයක් අනෙක් අක්ෂවල ශ්‍රිතයක්/සම්බන්දතාවක් ලෙස පෙන්විය නොහැකිය. එය හරියට ඔබ බඩ පිරෙන්න කෑවත් තවෙකුගේ බඩ නොපිරෙන්නා සේය. මෙම ගතිගුණය රේඛීය ස්වායත්තතාව (linearly independence) ලෙසද හැඳින්වේ. එය සංඛේතාත්මකව පහත ආකාරයට ගණිතයේදී දැක්විය හැකිය.

මෙහි ei, ej ආදි ලෙස දක්වා තිබෙන්නේ මාන හඟවන අක්ෂ දෙකක ඒකක දෛශික වේ. ඉතිං, එවැනි ඒකක දෛශික දෙකක තිත් ගුණිතය කළ විට, ලැබෙන අගය δij අගයට සමාන වන බව ඉන් කියයි. δij යන්න ක්‍රොනිකර් ඩෙල්ටා (Kronecker Delta) ලෙස හැඳින්වෙන අතර, එහි නිශ්චිත තේරුමක් ඇත. එම තේරුම නම්, i = j වන විට ඉහත තිත් ගුණිත අගය 1විය යුතු බවත්, ඒවා අසමාන වන විට 0 වන බවත් වේ. ඉන් කියන දේ සිතා බලන්න. ඔබ ප්‍රලම්භක යැයි සිතා යම් අක්ෂයක් යොදා ගතහොත් ඛණ්ඩාංක පද්ධතිය තුල, එම අක්ෂය ඔස්සේ පිහිටන ඒකක දෛශිකය ඉහත සම්බන්දතාව තෘප්ත කළ යුතුමයි.

සටහන
ක්‍රොනිකර් ඩෙල්ටා යන්න ගණිතයේ හා විද්‍යාවේ නිතර භාවිතා වන දෙයකි. එය සංඛේතවත් කරන්නේ δij වැනි ආකාරයකට සිම්පල් ඩෙල්ටා ග්‍රීක් අක්ෂරයෙනි (ඊට ඩෙල්ටා යන නාම කොටස ලැබී තිබෙන්නේත් එනිසාය). සෑමවිටම, යම් ගණිතමය ප්‍රකාශයකට මෙය සමාන කෙරේ. සමාන විය යුතුවා පමණක් නොව, ක්‍රොනික ඩෙල්ටාහි යටකුරු ලෙස දක්වන අක්ෂර දෙක (එනම් i, j) යටකුරු ලෙස පවතින විචල්‍යයන් දෙකක්ද ( ei, ej) එම ගණිත ප්‍රකාශය තුල තිබිය යුතුය (ඉහත සම්බන්දතාව වගේ).

ඉතිං ක්‍රොනික ඩෙල්ටා හි නිශ්චිතවම අගය කීයද? ක්‍රොනික ඩෙල්ටා අගය එක්කෝ 0 වේ; නැතහොත් 1 වේ. එම අගයන් දෙකෙන් එකක් අනිවාර්යෙන්ම ගණිත ප්‍රකාශය විසින් ගත යුතුය. 0 හෝ 1 වීමට කොන්දේසියක් ඇත. එම කොන්දේසිය නම්, ගණිත ප්‍රකාශය තුල අර කියූ යටකුරු සහිත පද දෙක සමාන නම් 1 වන බවත්, අසමාන නම් 0 වන බවත්ය. ඒ අනුව ක්‍රොනික ඩෙල්ටා පහත ආකාරයට විස්තාරණය කරද දැක්විය හැකිය.


ඉහත සම්බන්දතාව තෘප්ත කරන ලෙස සැකසූ තවත් ඛණ්ඩාංක පද්ධති කිහිපයක් ගැන බලමු. අප සලකා බලන එම පද්ධති වන්නේ:

       1. ධ්‍රැවක ඛණ්ඩාංක පද්ධතිය
       2. සිලින්ඩර් ඛණ්ඩාංක පද්ධතිය
       3. ගෝලීය ඛණ්ඩාංක පද්ධතිය

ධ්‍රැවක හා සිලින්ඩර් ඛණ්ඩාංක පද්ධති

ධ්‍රැවක ඛණ්ඩාංක පද්ධතිය (Polar coordinates system) ද්විමාන වේ. එනිසා එකිනෙකට ප්‍රලම්භක ඛණ්ඩාංක දෙකක් තිබිය යුතුය. එකිනෙකට ප්‍රලම්භක ඛණ්ඩාංක දෙක නම් කර තිබෙන්නේ අරය (radius) හෙවත් අරීය ඛණ්ඩාංකය (radial coordinate) හා කෝණික ඛණ්ඩාංකය (angular coordinate) හෙවත් ධ්‍රැවක ඛණ්ඩාංකය (polar coordinate) හෙවත් උද්දිගංශය (azimuth) වේ. කාටිසියානු පද්ධතියේදී මූලය ලෙස හැඳින් වූ ලක්ෂ්‍යය මෙම පද්ධතියේදී ධ්‍රැවය (pole) ලෙස හැඳින්වේ. තවද, කෝණය මැනීම පටන් ගන්නා යම් නිර්දේශ අක්ෂයක් (reference axis) අවශ්‍ය වේ (සාමාන්‍යයෙන් දකුණු පැත්තට විහිදෙන තිරස් රේඛාව/අක්ෂය ඒ සඳහා යොදා ගැනේ). එම අක්ෂය ධ්‍රැවක අක්ෂය (polar axis) ලෙස හැඳින්වේ. පහත රූපය බලන්න.


මෙම පද්ධතියේදී යම් ලක්ෂ්‍යයක ඛණ්ඩාංක කියන්නේ පළමුව එම ලක්ෂ්‍යයට ධ්‍රැවයේ සිට පවතින දුර (අරීය ඛණ්ඩාංකය) හා එම ලක්ෂ්‍යයට ධ්‍රැවයේ සිට ඍජු රේඛාවක් ඇන්ද විට, එම රේඛාව හා ධ්‍රැවක අක්ෂය අතර පවතින කෝණය (උද්දිගංශය) මඟිනි.

සාමාන්‍යයෙන් අරීය ඛණ්ඩාංකය r හෝ ρ (සිම්පල් ග්‍රීක් අකුරවක් වන "රෝ") මඟින් නිරූපණය කෙරේ (කාටිසියානු ඛණ්ඩාංක x, y, z යන අක්ෂරවලින් නිරූපණය කළා සේම). උද්දිගංශය අංශක හෝ රේඩියන් (රේඩියන් යනු කෝණ මනින සම්මත ඒකකයයි) වලින් මනින අතර, නිර්දේශ අක්ෂයේ සිට වාමාවර්තව (counter-clockwise) එය මැනේ. මෙම ඛණ්ඩාංකය ϕ හෝ θ මඟින් සංඛේතවත් කෙරේ.

මෙම ක්‍රමයේ සුවිශේෂිතා තිබේ. එනම් එම ධ්‍රැවක ඛණ්ඩාංක තලය මත පවතින යම් ලක්ෂ්‍යයක ඛණ්ඩාංක අගය අනන්‍ය නොවීමයි. කාටිසියානු පද්ධතියේදී ලක්ෂ්‍යයක ඛණ්ඩාංක හැමවිටම අනන්‍ය විය (අනන්‍ය යනු එක් ආකාරයක් පමණක් පවතිනවා යන තේරුම ඇත). ඊට හේතුව කෝණවල ඇති ප්‍රමූලධර්ම ලක්ෂණයකි. එනම්, යම් ලක්ෂ්‍යයක් වටා භ්‍රමණය වන විට, සෑම අංශක 360කට සැරයක්ම එකම ලක්ෂ්‍යය පසු කරයි (එය වාමාවර්තව හෝ දක්ෂිණාවර්තව විය හැකියි). එවිට, (r, 30), (r, 390), (r, 750) ආදි ලෙස ඛණ්ඩාංක යුගල අනන්ත ගණනක් සකසා ගත හැකි අතර, ඒ සෑම එකකින්ම එකම ලක්ෂ්‍යය නිරූපණය කෙරේ. පොදුවේ යම් ලක්ෂ්‍යයක ඛණ්ඩාංක යුගලය (r, θ±n.360) ලෙස නිරූපණය කළ හැකිය (n යනු ඕනෑම ධන නිඛිලයකි). එහෙත් කෝණ සඳහා පළමු අංශක 360 තුල පවතින කෝණයක් ගත් විට, ඛණ්ඩාංක අනන්‍ය වේවි.

ධ්‍රැවක ඛණ්ඩාංක ඊට අනුරූප (ද්විමාන) කාටිසියානු ඛණ්ඩාංක බවටත්, (ද්විමාන) කාටිසියානු ඛණ්ඩාංක ඊට අනුරූප ධ්‍රැවක ඛණ්ඩාංක බවටත් පහසුවෙන්ම පත් කර ගත හැකිය. පහත රූපය අනුව ඛණ්ඩාංක යුගලවල් අතර සම්බන්දතා පහත ආකාරයට ලබා ගත හැකිය.

       x = rcos(θ)
       y = rsin(θ)

       r = (x2 + y2)
      θ = tan -1 (y/x) = arctan(y/x)

ඇත්තෙන්ම ඉහත සම්බන්දතාවලින් අවසානයට දැක්වූ සම්බන්දතාවෙන් කියන්නේ උද්දිගංශය කාටිසියානු ඛණ්ඩාංකවලින් ලබා ගන්නා අයුරු වුවත්, එම නිශ්චිත සූත්‍රය වලංගු වන්නේ ඛණ්ඩාංක පද්ධතියේ පළමු කොටුව/පාදකය සඳහා පමණි. එම කෝණ අගය විවිධ පාදක තුල හා අවස්ථාවල එම සරල තනි සූත්‍රයෙන් සෙවිය නොහැකිය (ඊට හේතුව ත්‍රිකෝණමිතිය දැනුමින් තේරුම් ගන්න). ඒ සියලු අවස්ථාවලට ගැලපෙන පරිදි ලියන ක්‍රමයක්ද ඇත.

       θ = atan2(y/x)

atan2() යනු සාම්ප්‍රදායික ත්‍රිකෝණමිතික අනුපාතයක් නොවේ (එනිසා ඔබ සමහරවිට ඒ ගැන නොදන්නවා විය හැකියි). එහි අර්ථ දැක්වීම පහත ආකාරයට වේ. බලන්න විවිධ පාදකවලදී හා අවස්ථාවලදී අගයන් කිහිපයක් ගනී.


කාටිසියානු ඛණ්ඩාංක පද්ධතියකින් දැක්විය හැකි ඕනෑම හැඩයක්/ශ්‍රිතයක් ධ්‍රැවක ඛණ්ඩාංක පද්ධතිය තුලද දැක්විය හැකිය. ඇත්තටම එක් පද්ධතියක නිරූපණයක් තවත් පද්ධතියක් තුල නිරූපණය කළ හැකිය. එහෙත් එවිට ශ්‍රිතයේ සංකීර්ණතාව වෙනස් වේ. ඉතා පහසුවෙන් එක් ඛණ්ඩාංක පද්ධතියක දක්වන නිරූපණයක්/ශ්‍රිතයක් වෙනත් පද්ධතියක් තුල ඉතා සංකීර්ණ විශාල ශ්‍රිතයක් වනු ඇත.

උදාහරණයක් ලෙස, කාටිසියානු පද්ධතිය තුල වෘත්තයක් x2 + y2 = c වැනි ආකාරයකින් නිරූපණය වුවත්, ධ්‍රැවක පද්ධතිය තුල එය r = c ලෙස ඉතාම සරල වේ. ඇත්තෙන්ම ධ්‍රැවක පද්ධතිය තුල වෘත්තාකාර හැඩයන් ඉතා සරලව දැක්විය හැකිය. උදාහරණ ලෙස, පහත දැක්වෙන සියලු රූප ධ්‍රැවක ඛණ්ඩාංක මඟින් සරලව නිරූපණය කළ හැකිය. මෙම හැඩයන් කාටිසියානු පද්ධතිය ඇසුරින් නිරූපණය කරන්නට ගියොත් ඉතා සංකීර්ණ ශ්‍රිත සෑදිය යුතු වෙනවා.

මේ අනුව පැහැදිලි වෙනවා විවිධ ඛණ්ඩාංක පද්ධති පවතින හේතුව. එනම්, සමහර අවස්ථාවලට සමහර පද්ධති යොදා ගැනීමෙන් ශ්‍රිතය සරල වෙනවා. එවිට සුලු කිරීම හා තේරුම් ගැනීමද පහසු කරනවා. එය උපමාවකින් කියතොත්, පොරොවෙන් හා පිහියෙන් යන දෙකෙන්ම යමක් කැපිය හැකි වුවත්, සමහර අවස්ථාවලදී පොරොවද, තවත් සමහර අවස්ථාවලදී පිහියද යොදා ගැනීම පහසු වෙනවා.
 
0 Read More »

Friday, August 18, 2017

දෛශික (vectors) - 10

0
ටහන
ඔබ දන්නවා සාමාන්‍යයෙන් අප ශ්‍රිතයක් දක්වන්නේ f(x), g(x,y), y වැනි සංඛේත ක්‍රමයකින්. නිකංම y හෝ z හෝ ලෙස අක්ෂරයකින් ශ්‍රිතයක් නිරූපණය කළ හැකි වුවත් f(x,y) හෝ g(t) වැනි ක්‍රමය වඩා හොඳ වන්නේ එහිදී ශ්‍රිතයේ තිබෙන ස්වායත්ත විචල්‍යයන්ද ශ්‍රිතයේ නාමයේ වරහන තුල පවතින නිසාය. එනිසා z = 2x4 + 5y හා f(x,y) = 2x4 + 5y යන දෙකෙන්ම එකම ශ්‍රිතය නිරූපනය කළත්, දෙවැනි නිරූපන ක්‍රමය වඩා හොඳයි.

යම් දෛශික ශ්‍රිතයක් ඒකක දෛශික ආශ්‍රයෙන් නිරූපනය කරන හැටි ඔබ දන්නවා. උදාහරණයක් ලෙස, f(x,y,z) = 3xy i - 5y2 j + xz k යන දෛශික ශ්‍රිතය ගන්න. මෙම ශ්‍රිතයම f(x,y,z) = (3xy, 5y2, xy) ලෙසද සමහරුන් දක්වනවා (හරියට ඛණ්ඩාංක අගයක් දක්වන්නා සේ). මෙවිට පහත ආකාරයටද අවකලනයෙන් (අනුකලන හෝ වෙනත් ගණිත කර්ම වුවද) පසුව ලැබෙන ශ්‍රිත දැක්විය හැකියි. ඒ කියන්නේ, f(x,y,z) = x2yi + sin(x)j + xzk යන දෛශික ශ්‍රිතය අවකලනය කළ විට, 2xyi + cos(x)j + zk යන ශ්‍රිතය ලැබෙන බවයි.



ඉහත පෘෂ්ට අනුකල දක්වන සූත්‍ර හුරුබුහුටි වුවත්, සුලු කරන විට තරමක් සංකීර් ස්වභාවයක් ගනී. ශ්‍රිතය ඒකක දෛශික ආශ්‍රයෙන් (එනම්, f(x,y,z) = Pi + Qj + Rk ස්වරූපයෙන්) අප දන්නවා (එය දන්නා දත්තයක්). දැන් අපට අවශ්‍ය වෙනවා ඒකක අභිලම්භක දෛශිකය (N) දැනගන්නට. එය සාමාන්‍යයෙන් දත්තයක් ලෙස ලබා නොදී තිබිය හැකියි. එවිට, එය අප සකස් කර ගත යුතුය. එය එකවරම තීරණය කළ හැකියි පෘෂ්ටය තිරස් හෝ සිරස් තලයක් ලෙස පවතී නම්. එනම්, ත්‍රිමාන ඛණ්ඩාංක පද්ධතියක, x-y, x-z, y-z ලෙස එකිනෙකට ලම්භක තල 3ක් තිබෙනවානෙ. ඉතිං, අප සලකා බලන පෘෂ්ටයක්ද මෙවැනි තලයක් මත හෝ ඊට සමානතරව පිහිටියේ නම්, අභිලම්භකය වන්නේ තලය සෑදීමට හවුල් නොවූ අනෙක් අක්ෂයේ දිශාවයි. උදාහරණයක් ලෙස, x-y තලයේ අභිලම්භකය පිහිටන්නේ z අක්ෂය ඔස්සේය. එලෙසම, x-z තලයේ අභිලම්භකය y අක්ෂය ඔස්සේද, y-z තලයේ අභිලම්භකය x අක්ෂය ඔස්සේද පිහිටයි. දම්පාටින් දක්වා තිබෙන්නේ තල 3ට ඇඳි අභිලම්බ 3යි (එම ඊහිස් අනෙක් පසට සිටින සේද අභිලම්බක ඇඳිය හැකියි).

එහෙත් පෘෂ්ටය එවැනි තිරස් හෝ සිරස් තලයක් නොවන විට (එනම්, ආනත තලයක් හෝ වක්‍ර පෘෂ්ටයක් වන විට), එය සොයන ආකාරයක්ද ඇත. ඒ සඳහා පළමුව ග්‍රැඩ් කර්මය සිදු කරන්න පෘෂ්ටය නිරූපණය කරන ශ්‍රිතය මත. එවිට ලැබෙන්නේ ඒ පෘෂ්ටයේ අභිලම්භයයි. එහෙත් එය ඒකක අභිලම්භකයක් බවට පත් කිරීමට, ග්‍රැඩ් කර්මයෙන් ලැබුණු ප්‍රතිපලයේ විශාලත්වයෙන් බෙදිය යුතුය (ඒකක දෛශික පාඩමේදී මේ ගැන අප කතා කළා). එවිට අවසන් සම්පූර්න සූත්‍රය පහත ආකාරයට විය යුතුයි.

උදාහරණයක් බලමු. x2+y4+3yz=2 මඟින් යම් පෘෂ්ටයක් නිරූපණය කරනවා යැයි සිතමු. මෙම පෘෂ්ටය සඳහා ඒකක අභිලම්භකය සොයමු. මෙය f(x,y,z) = x2+y4+3yz - 2 = 0 ලෙස ලිවිය හැකියි. මෙම ශ්‍රිතය මත ඉහත විස්තර කළ පරිදි ඒකක අභිලම්බකය සොයන පියවර දෙක අනුගමනය කරමු.

ඉහත පෘෂ්ටයේ (1,2,1) යන ලක්ෂ්‍යයේදී ඒකක අභිලම්භකයේ අගය දැන් සොයමු. මෙම ඛණ්ඩාංක අගයන් ඉහත ප්‍රතිපලයට ආදේශ කරන්න.

ඇත්තටම තිරස් හෝ සිරස් තලයක් සඳහා වූ අභිලම්භකය (හෝ ඒකක අභිලම්බකය) සෙවීමටද ඉහත ග්‍රැඩ් ගණිත කර්මය එසේම යොදා ගත හැකියි. උදාහරණයක් ලෙස, ත්‍රිමා ඛණ්ඩාංක පද්ධතියක z = 5 යන තලයට පවතින අභිලම්භකය සොයමු. ඒ කියන්නේ මෙම තලයේ ශ්‍රිතය f(x,y,z) = z ලෙස පොදුවේ ලිවිය හැකිය.

තවද, බොහෝවිට පෘෂ්ටය කොටස් වශයෙන් සුමට පෘෂ්ට වේ. එවිට, සමස්ථ පෘෂ්ටය එකවර අනුකලය නොකර, කොටස්වල අනුකල වෙන වෙනම සොයා ඒවා එකතු කළ හැකියි. උදාහරණයක් ලෙස, කොටස් වශයෙන් සුමට යම් පෘෂ්ටයක කොටස් 3ක් තිබෙන්නේ නම්, පහත ආකාරයට ලිවිය හැකියි. එහි S1, S2, S3 ආදි වශයෙන් සංඛේතවත් කරන්නේ පෘෂ්ට කොටස් 3යි.

පෙරත් සඳහන් කළ ලෙසටම, පෘෂ්ට අනුකලනය පහත ආකාරයේ පුනර්කෘත අනුකලයක් බවට පත් කර ගත යුතුයි එය සුලු කිරීමට නම්. ඇත්තෙන්ම මෙය අනුකලනයට අදාල කරුණක් මිස දෛශිකවලට අදාල කරුණක් නොවේ. dS යනු ඉතා කුඩා වර්ගපලයක් නිසා, එය පුනර්කෘත අනුකලනයකට පරිවර්තනය කරන විට, ලැබෙන dq, dt යන විෂය පදද නියෝජනය කරන්නේ අවසාන වශයෙන් දිගවල් දෙකකි (ඔබ දන්නවා දිගවල් දෙකක් හෙවත් දිගක් පළලක් එකිනෙකට ගුණ කළ විට වර්ගපලයක්නෙ ලැබෙන්නේ). පෘෂ්ටය යම් තලයක් නම් (එනම් වක්‍රතාවක් නැත), උදාහරණයක් ලෙස, x-y තලයක් මත dS යන්න dxdy ලෙස සකස් වේ (dS = dxdy). එහෙත් පෘෂ්ටය වක්‍රයි නම්, නිකංම dxdy ලෙස ලිවිය නොහැකිය (වක්‍රතාව පෙන්නුම් කරන අමතර ගුණිත කොටසක් අවශ්‍ය වේවි dS = (3/x)dxdy වැනි).

දැන් අප උදාහරණයක් බලමු. දෛශික ක්ෂේත්‍ර ශ්‍රිතය F = 2x2yi - y2j + 4xz2k වේ. ත්‍රිමාන ඛණ්ඩාංක පද්ධතියක පළමු අෂ්ටමකයේ (octant) සීමා වී තිබෙන සිලින්ඩරය y2 + z2 = 9 මඟින් නිරූපණය වේ. එම සිලින්ඩරය x = 0, x = 2, y = 0, z = 0 යන තල මඟින් සීමා වී තිබේ. පහත රූපයෙන් දැක්වෙන්නේ එම විස්තරයයි.

මෙහි සමස්ථ මතුපිට සෑදි තිබෙන්නේ කොටස් 5කින්ය. එම කොටස් 5 පහත ආකාරයට පවතින බව පෙනේ. ඒ කියන්නේ මෙය කොටස් වශයෙන් සුමට පෘෂ්ටයකි.

       s1 = AEBO (x-y තලයකි)
       s2 = AOCD (x-z තලයකි)
       s3 = BOC (y-z
තලයකි)
       s4 = AED (y-z තලයකි)
       s5 = EBCD (වක්‍ර තලයකි)

දැන් මෙම මුලු පෘෂ්ට අනුකලය කොටස්වල පෘෂ්ට අනුකලවල එකතුවට සමාන කළ හැකිය.

s1 කොටසේ පෘෂ්ට අනුකලනය සොයමු. මෙම පෘෂ්ට කොටසේ ඒකක අභිලම්භකය වන්නේ k වේ. අමුතුවෙන් එය සොය සොය ඉන්නට අවශ්‍ය නැහැනෙ; තිරස් පෘෂ්ටයක් ගත් විට එහි අභිලම්භකය සිරස් වේ. තවද, මෙම පෘෂ්ටයේ ඕනෑම ලක්ෂ්‍යයක z අගය 0 වේ (දී තිබෙන දත්තයක්).

දැන් අපි s2 කොටසේ පෘෂ්ට අනුකලනය සොයමු. මෙම කොටසේ ඒකක අභිලම්භකයත j බව බැලූ ගමන්ම පෙනේ. තවද මෙම පෘෂ්ටයේ ඕනෑම ලක්ෂ්‍යයක y අගය 0 වේ (දී තිබෙන දත්තයක්).

දැන් අපි s3 කොටසේ පෘෂ්ට අනුකලනය සොයමු. මෙම කොටස් ඒකක අභිලම්භකය i බව එකවරම තේරුම් ගත හැකියි. මෙම පෘෂ්ටයේ ඕනෑම ලක්ෂ්‍යයක x අගය 0 වේ (දී තිබෙන දත්තයක්).

s4 කොටසේ පෘෂ්ට අනුකලනය දැන් සොයමු. මෙහිද ඒකක අභිලම්බකය i වන අතර, මෙම පෘෂ්ටය මත ඕනෑම ලක්ෂ්‍යයක x අගය 2 වේ. ඉහත අවස්ථා 3දිම පුනර්කෘත අනුකලනය කිරීමේ අවශ්‍යතාව මතු වූයේ නැහැ මොකද අනුකලනය කෙරෙන ශ්‍රිත කොටස ශූන්‍ය වූවා. එහෙත් දැන් එය ශූන්‍ය නොවන නිසා, පුනර්කෘත අනුකලනය යොදා ගැනීමට සිදු වේ. මෙම පෘෂ්ටයත් තලයකි. එනිසා dS = dydz වන අතර, x විචල්‍යයද නියත පදයක් බවට පත් වෙනවා මොකද එම විචල්‍යයේ අගය මෙම තලය මතදී නියත වේ. dy විෂය පදයට සාපේක්ෂව අනුකල සීමා වන්නේ 0 සිට (9 - z2) වේ. dz විෂය පදයට සාපේක්ෂව අනුකල සීමා වන්නේ 0 සිට 3 දක්වා වේ.

අවසාන වශයෙන් s5 කොටසේ පෘෂ්ට අනුකලය සිදු කළ යුතුය. එය පෙර අවස්ථා 4ටම වඩා සංකීර්ණ වේ. පළමුව එහි ඒකක අභිලම්භකය සෙවිය යුතුය. y2 + z2 = 9 = 32 යන දත්තයද සුලු කිරීමේදී යොදා ගෙන තිබේ.

මෙම වක්‍ර පෘෂ්ටය සඳහා dS = (3/z)dxdy වේ. ශ්‍රිතය හා ඉහත ඒකක අභිලම්භකය යන දෙකෙහි තිත් ගුණිතය අනුකලනය තුල ලබා ගෙන, ඉන්පසු එය පුනර්කෘත අනුකලනයෙන් සුලු කරන්න. පුනර්කෘත අනුකලනයේදී සුලු කිරීමේ පහසුව තකා විචල්‍ය ආදේශයක් සිදු කර තිබේ (අනුකලන ගණන් සෑදීමේ උපක්‍රමයකි එය). y-z තලයේ පවතින වෘත්තයක් නිසා (y2 + z2 = 9 නිසා), සයින් හා කොස් ආශ්‍රයෙන් y, z දක්වා තිබෙන ආකාරය නිවැරදි බව ඔබට වැටහිය යුතුය. එනම්, අරය ඒකක 3ක් දිග වන වෘත්තයක, එම වෘත්ත පරිධියේ ඕනෑම ලක්ෂ්‍යයක් විසින් අක්ෂ දෙක මත ප්‍රක්ෂේපිත දිගවල් 3cos(t) හා 3sin(t) වේ (t යනු කෝණයයි). පුනර්කෘත අනුකලය තුල x විෂයට අදාල අනුකල සීමා දෙක වනුයේ 0 සිට 2 දක්වාය (දී තිබෙන දත්තයකි). අනෙක් අනුකලය කෝණයක් ඇසුරින් තිබෙන නිසා, එහි සීමා අගයන් දෙක විය යුත්තේ 0 සිට අංශක 90 දක්වාය. එයද දී තිබෙන දත්තයක් ඇසුරින් වක්‍රාකාරයෙන් ලබා ගත් දත්තයකි මොකද වෘත්ත කොටස පවතින්නේ අංශක 90ක කොටසක් තුල පමණි (මුලින් පෙන්වා දුන් රූපය බලන්න).

දැන්, පෘෂ්ට කොටස් සියල්ලේම වෙන වෙනම අනුකල අගයන් ලැබී ඇත. අවසාන පිලිතුර වන්නේ එම අගයන් සියල්ලේම එකතුවයි.

ඇත්තෙන්ම අනුකලයක් සුලු කිරීමට ආකාර කිහිපයක්ම තිබිය හැකිය. ඒ කියන්නේ දෛශික පිලිබඳ කාරණයක් නොවේ සුලු කිරීම. එනිසා ඉහත ගැටලුව වෙනත් ආකාරවලින්ද සුලු කළ හැකි වේවි.

මෙතෙක් විස්තරය හා උදාහරණද සලකා බැලුවේ අනුකලය තුල තිත් ගුණිතය තිබෙන ආකාරයේ පෘෂ්ට අනුකලය ගැනයි. භෞතික විද්‍යාවේදි බහුලවම අවශ්‍ය වන ස්වරූපයද එයයි. විද්‍යුත්, චුම්භක, ගුරුත්ව ආදී ක්ෂේත්‍ර තුල යම් කාර්යන් සිදු කරන විට, ඇත්තටම මෙම පෘෂ්ට අනුකල ගණිත කර්මය තමයි එතැන යෙදෙන්නේ. එවිට, අදාල දෛශික ශ්‍රිතයෙන් නිරූපණය කෙරෙන්නේ ක්ෂේත්‍රය වේ. එනිසා ස්‍රාව ආකෘති (flux model) නිතරම මෙම පෘෂ්ට අනුකල ක්‍රමයෙන් ඉදිරිපත් කෙරේ. අනෙක් පෘෂ්ට අනුකල ආකාර දෙකද ඒ ආශ්‍රයෙන් තේරුම් ගත හැකිය.
Read More »